College of Engineering

Permanent URI for this communityhttp://itsupport.cu.edu.ng:4000/handle/123456789/28755

Welcome to the page of the College of Engineering.

Browse

Search Results

Now showing 1 - 10 of 46
  • Item
    QUALITY CONTROL ASSESSMENT OF BODY-MAKING PROCESS IN ALUMINIUM BEVERAGE CAN PRODUCTION
    (Covenant University Ota, 2025-01) AKEREKAN OPEYEMI ERNEST; Covenant University Dissertation
    This study focused on the analyses of the quality control process of aluminium beverage can production (sleek size – 330 ml) monitored over a period of time, by deploying six key parameters: Bright Can Axial Load, Finished Can Height, Flange Width, Groove Diameter after Reformer, Dome Depth with Reformer, and Finished Can Buckle. These parameters revolve around the standardization and specification of the beverage can for a sustainable food packaging process. The study employed Statgraphics Centurion (version VII) as a statistical tool for analyzing process stability and capability through Statistical Process Control (SPC) techniques. This software generated control charts (X-bar charts) and process capability indices (Cp and Cpk) to evaluate process performance and identify areas requiring improvement. Descriptive statistical measures such as process mean and standard deviation were calculated to support the analysis. The methodology also included thoroughly evaluating production line data, with variations in each quality parameter assessed against defined specification limits. Results indicate that the Bright Can Axial Load has a moderate capability (Cp = 0.82, Cpk = 0.75) with a slightly off-center mean. Also, the Finished Can Height show low capability (Cp = 0.30, Cpk = 0.25), indicating significant variability. Flange Width has moderate capability (Cp = 0.43, Cpk = 0.43), while Groove Diameter after Reformer presents a Cp of 0.60 but a very low Cpk of 0.06, reflecting a misaligned process mean. In addition to this, Dome Depth with Reformer shows moderate capability (Cp = 0.53, Cpk = 0.23), needing better centering. Finished Can Buckle demonstrates the highest capability (Cp = 1.63, Cpk = 0.74) with a slightly off-center mean. The findings imply that aligning process means with specification limits and reducing variability will ensure consistent, high-quality aluminium production. Thus improving the operation process and subsequent improvement in the overall productivity of aluminium beverage cans.
  • Item
    ASSESSMENT OF THE UTILISATION OF SUSTAINABLE ENERGY AND ENVIRONMENTAL PROTECTION IN SOUTHERN NIGERIA
    (Covenant University Ota, 2025-01) OBANOR ENOCH IWINOSA; Covenant University Dissertation
    This study evaluates renewable energy adoption across Ogun, Lagos, Edo, and Delta states using a mixed-methods approach. A bibliometric analysis of 424 research publications (2014–2024) revealed that solar energy was the most studied topic (35%), followed by hydropower (25%) and bioenergy (20%). The analysis identified a 32% increase in renewable energy publications since 2019, with 62% of highly cited papers focusing on policy and deployment strategies. Citation mapping indicated that the top 10 research institutions contributed 47% of all renewable energy studies, highlighting the concentration of expertise in specific regions. Survey data from 387 respondents indicated that 68% lacked reliable electricity access, while 78% relied on traditional biomass or fossil fuels. Among respondents, 62% expressed willingness to adopt solar energy if installation costs were reduced by at least 40%. However, only 23% were aware of existing renewable energy policies, and 54% rated government efforts as inadequate. In terms of energy satisfaction, only 9% of respondents rated their current energy sources as highly adequate, while 36% described them as moderate, and 21% rated them as low. The study further analysed energy availability across Nigerian states. Lagos, Ogun, Edo, and Delta states experience an average of 12–18 hours of electricity outages per day, forcing 74% of households to rely on generators as backup power sources despite Nigeria’s solar radiation potential of 3.5–7.0 kWh/m². Alignment with Sustainable Development Goals (SDGs) 7 and 13 was assessed, revealing that only 19% of publications explicitly addressed energy access and climate change mitigation, while survey results showed that 69% of respondents were unaware of Nigeria’s commitment to SDGs. Projections based on current adoption rates estimate that, if key policy recommendations, energy access in Southern Nigeria could rise from 32% to over 70% by 2035 and fossil fuel dependency could decline by 55%. This research shows that achieving an efficient renewable energy transition requires urgent policy interventions, enhanced financial incentives, and strengthened institutional frameworks.
  • Item
    A comprehensive review of biofuel utilization for household cooking in developing countries: Economic and environmental impacts
    (Process Safety and Environmental Protection Volume 191, Port A,, 2024-11) Dirisu joseph 0.; Oyedepo Sunday 0.; Olowole Olukunle C.; Somefun Tobilobo E.; Peter Nkoliko J.; Babatunde Damilola; Nwaokocha Collins N.; Onokwai Anthony 0.; Obano Enoch; Alam Md Mahbub; Kale Sandip A.
  • Item
    Utilization of Bioresources: Towards Biomass Valorization for Biofuels
    (Bioresource Utilization and Management, 2021) Sanni Samuel Eshorame; Agboola Oluranti; Moses Emetere; Okoro Emeka; Adefila Sam Sunday; Sadiku Rotimi; Alaba Peter
    Biomass valorization has recently gained wide attention owing to the vast availability of wastes from which essential oils can be extracted, processed, and subsequently converted to energy utilities and value-added products by taking advantage of the free fatty acid contents of the parent bio-oils. The waste materials undergo a conversion process to give the prospective fuels. The two major final products of the conversion process are bioethanol and biodiesel. Recent findings have also indicated the usefulness of these products as intermediate products/raw materials for end products such as simple sugars or biolubes; this goes further to emphasize the huge potential in these substrates (agricultural wastes) when used as raw materials. In 252recent times, hydrogen from biomass is being sought as a means of energy to power cars, and this also brings to bear the need to underscore how far efforts have been made to introduce bioethanol-driven cars. Fossil fuels, besides being nonbiodegradable relative to bio-oils, are gradually being depleted, with no measures put in place for their replacement. This then suggests the need to look beyond the current situation for viable alternatives. This chapter provides background information on biofuels, their production processes, and their physicochemical characterization, application, and sustainability, since the world is like a vicious circle that currently tilts in the direction of "engineering for a sustainable world". Furthermore, the chapter unveils some gray areas of research that still remain untapped, thus opening up doors for revenue generation.
  • Item
    Surface effect of environmentally assisted corrosion growth of automotive welded steel performance
    (Materials Proceedings Volume 38, Part 5, 2021-03) Fayomi O. S. I.; Samuel Olusegun David; Mashilo Matsobane; Popoola Abimbola Patricia; Agboola Oluranti; Balasubramanian Dhinesh
    Failure of steel in automobile industries due to environmentally assisted medium in service is alarming. In this study an effort has been made to investigate critically the corrosion induced performances of automotive welded part. The experimental correlation on the effect of corrosive media (NaCl and HCl solutions) on the base metal, heat affected zone (HAZ) and weld metal formed were examined using linear potentiodynamic polarization technique. The hardness, microstructural and phase rationale of the studied joint was evaluated using, diamond base indenter, Scanning electron microscope and x-ray diffractograms respectively. The results revealed that the base metal has no detrimental phase transformation unlike the HAZ and the weld joint region. The hardness value of 185 HV welded joint was obtained compared to 235.95 HV of base region. The corrosion propagation in the 3.5NaCl and 1 M HCl shows that pitting deterioration occurs at the welded position in all case as a result of the shift in grain refinement and micro-straining during welding process.
  • Item
    Short review on the prospect of laser cladding for aluminum based alloys composite for automotive industries
    (RESEARCH ARTICLE, 2022-08) Agboola O.; Fayomi O. S. I.; Ayoola A.; Ayeni A. O.; Alagbe E. E.; Sadiku E. R.; Popoola P.
    Laser cladding is a growing technological method that utilizes a navigating high power laser for melting a small region of the substrate; it has a function of trapping and melting entering powder particles. Hence, the process leads to the development of a new stratum. Aluminum alloy Matrix composites afford properties suchlike high wear resistance, high tensile strength, lightweight; this composites is finding wide applications in automotive industry. This review presents a brief discussion on laser cladding for aluminum base alloys for automotive industry with emphasis on aluminum alloys matrix composite for automotive industry.
  • Item
    Safety and Environmental Aspects of Cellulose Nanoparticles
    (Cellulose Nanoparticles: Chemistry and Fundamentals, 2021-06-01) Fasiku Victoria Oluwaseun; Agboola Oluranti; Owonubi Shesan John; Revaprasadu Neerish; Sadiku E. R.
    Nanoparticles made from cellulose are increasingly gaining attention in several fields for diverse applications, which can be attributed to their excellent properties. The physical, chemical, and mechanical properties of cellulosic nanomaterials are being studied to investigate their application in areas such as drug delivery, wound dressing, artificial tissues, and others. However, the safety and environmental aspects of cellulose nanoparticles (CNPs) are yet to be fully understood and established. The ambiguity surrounding their environmental health and safety remains a serious concern to the standards community. This chapter, therefore, provides information about the types of cellulose nanoparticles, and their various properties and the characterization techniques employed to provide useful information about their properties. It further proceeds to focus on the safety and environmental issues associated with cellulose nanoparticles and the handling practices which can be implemented to ensure maximum safety. This includes various safety techniques that have been developed as precautionary measures against the release and exposure of cellulose nanoparticles into the environment.
  • Item
    ENHANCEMENT OF FINGERPRINT TEMPLATE PROTECTION AND PRIVACY PRESERVATION USING FULLY HOMOMORPHIC ENCRYPTION
    (Covenant University Ota, 2025-03) ITUH NICOL IGNATIUS; Covenant University Dissertation
    The transition from conventional or token-based passwords to biometric technologies because of the advantageous characteristics of biometrics traits is increasing daily. Nowadays, biometric technologies are utilised in applications such as border control, e-banking, e-health, etc. Biometric traits comprise biological traits (iris, face, fingerprint, etc) and behavioural traits (keystroke, signature, voice, etc). In contrast to other biometric traits, the fingerprint is the most utilised in most applications. Despite the advantages, biometric technologies have their drawbacks. The biometric data of an individual is unique since no two people have the same biometrics, and compromising this biometric data could have devastating results. This issue was addressed using the implementation of the Paillier cryptosystem, a partial homomorphic encryption scheme which only involves addition operations. This implementation suffers drawbacks when faced with complex computations such as the multiplication of two ciphertexts and faces ciphertext noise growth due to these complex computations. Thus, a need for fully homomorphic encryption which handles complex computation and manages noise growth through several techniques. This research work is aimed at enhancing fingerprint template protection and privacy preservation using fully homomorphic encryption. The proposed system was developed utilising the Brakerski/Fan-Vercauteren fully homomorphic encryption scheme implemented using the OpenFHE-Python library. The system was evaluated using the Neurotechnology CrossMatch dataset according to performance metrics including Accuracy, Genuine Acceptance Rate (GAR) and Equal Error Rate (EER). Results indicated that the Neurotechnology CrossMatch dataset achieved an accuracy of 84%, GAR of 84%, and EER of 16%. Therefore, the implementation of fully homomorphic encryption in biometrics achieves adequate accuracy despite both the encryption and decryption processes, thereby safeguarding the template, and preserving the user’s privacy.
  • Item
    Influence of synthetic carbon grade on the monomeric constitution of polyhydroxyalkanoate produced by Bacillus cereus AAR-1
    (2024) Akinwumi A. R.; Nwinyi O. C.; Ayeni A. O.; Mohan S. Venkata
    Three synthetic sucrose samples with varying manufacturing purity levels were selected as carbon substrates to synthesize diverse polyhydroxyalkanoates (PHAs) using a wild-type Bacillus cereus AAR-1. Comparative analyses of the extracted biopolymers were characterized using Fourier-transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (1H and 13C NMR), gas chromatography-mass spectrometry (GC-MS), Thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), CHNS/O elemental analysis, and X-ray diffraction (XRD). The biopolymers identified include Poly(3-hydroxytetradecanoate) (P3HTD), Poly(3-hydroxybutyrate-co-2-hydroxytetradecanoate) [P(3HB-co-2HTD)], and Poly(3-hydroxybutyrate) (P3HB). The carbon content of the biopolymers ranged from 39-53%, with no nitrogen element detected. The thermal decomposition temperature of [P(3HB-co-2HTD)] was 279 °C, surpassing the corresponding values for the other two biopolymers. Notably, the homopolymer P3HTD exhibited an increased melting temperature of 172.4 °C and a reduced crystallinity percentage (Xc %= 20%), crucial properties for bioplastics and medical sector applications. The results suggest that different carbon purity grades influenced homopolymer accumulated in Bacillus cereus AAR-1.
  • Item
    ENHANCING THE PERFORMANCE OF WATER BASED MUD FOR HIGH TEMPERATURE HIGH PRESSURE (HTHP) APPLICATIONS USING BIO-BASED POLYMER AND NANOPARTICLES
    (SSRN, 2022-12) Abiodun Adeyemi Gbadegesin; Samson Fadairo Adesina; ling Kegang; Ayodeji Ayoola A.; Owen Erhabor Lewis
    The increased need for energy and petroleum products has led to the exploration of deep and ultradeep wells such as geothermal and harsh formation. Oil-Based Muds (OBM) fluid has the best qualities because of its stability but its environmental challenge is of great concern. In many parts of the world, environmental rules continue to ban the use of oil-based muds, although very effective yet polluting and expensive. Water-Based Muds Fluids (WBMFs) which are environmentally friendly and inexpensive to produce are considered as alternatives, but under the high temperature and high-pressure conditions, their stability is compromised. Addition of biopolymer to WBMFs was consider since it is ecologically acceptable, but at elevated temperature the biopolymer is break down and reduces the drilling fluid's viscosity, suspension, and fluid loss capacity. As a result, there is need to formulate of high-performance water-based drilling fluids that are stable at high temperatures. This research paper investigated the thermal stability of Polyethylene-Glycol (PEG) in the formulated drilling fluid with biopolymers (Potato Peel powder, PPP) suspended in bentonitewater and buffered with eggshell nanoparticles (ESNP). The resultant samples were evaluated at normal temperature 25oC and high temperature150oC, and it was discovered that the addition of ESNP and PEG improved the drilling fluids' rheological behavior by 70.8% and 46.2%, respectively. Also, the filtration properties of the various samples were also analyzed at different concentrations and varying temperatures from 40oC to 220oC. These additives ESNP and PEG greatly slowed down the degradation of the biopolymer formulated mud up to 220 °C. This newly formulated fluid system, is stable at high temperatures, can meet the demands of high-temperature formation during drilling.